Joint modeling of two longitudinal outcomes and competing risk data.
نویسندگان
چکیده
Aortic gradient and aortic regurgitation are echocardiographic markers of aortic valve function. Both are biomarkers repeatedly measured in patients with valve abnormalities, and thus, it is expected that they are biologically interrelated. Loss of follow-up could be caused by multiple reasons, including valve progression related, such as an intervention or even the death of the patient. In that case, it would be of interest and appropriate to analyze these outcomes jointly. Joint models have recently received much attention because they cover a wide range of clinical applications and have promising results. We propose a joint model consisting of two longitudinal outcomes, one continuous (aortic gradient) and one ordinal (aortic regurgitation), and two time-to-events (death and reoperation). Moreover, we allow for more flexibility for the average evolution and the subject-specific profiles of the continuous repeated outcome by using B-splines. A disadvantage, however, is that when adopting a non-linear structure for the model, we may have difficulties when interpreting the results. To overcome this problem, we propose a graphical approach. In this paper, we apply the proposed joint models under the Bayesian framework, using a data set including serial echocardiographic measurements of aortic gradient and aortic regurgitation and measurements of the occurrence of death and reoperation in patients who received a human tissue valve in the aortic position. The interpretation of the results will be discussed.
منابع مشابه
مدلسازی توام دادههای بقا و طولی و کاربرد آن در بررسی عوامل موثر بر آسیب حاد کلیوی
Background: In many clinical trials and medical studies, the survival and longitudinal data are collected simultaneously. When these two outcomes are measured from each subject and the survival variable depends on a longitudinal biomarker, using joint modelling of survival and longitudinal outcomes is a proper choice for analyzing the available data. Methods: In this retrospective archiv...
متن کاملBayesian Sample Size Determination for Joint Modeling of Longitudinal Measurements and Survival Data
A longitudinal study refers to collection of a response variable and possibly some explanatory variables at multiple follow-up times. In many clinical studies with longitudinal measurements, the response variable, for each patient is collected as long as an event of interest, which considered as clinical end point, occurs. Joint modeling of continuous longitudinal measurements and survival time...
متن کاملJoint modeling of multivariate longitudinal data and the dropout process in a competing risk setting: application to ICU data
BACKGROUND Joint modeling of longitudinal and survival data has been increasingly considered in clinical trials, notably in cancer and AIDS. In critically ill patients admitted to an intensive care unit (ICU), such models also appear to be of interest in the investigation of the effect of treatment on severity scores due to the likely association between the longitudinal score and the dropout p...
متن کاملAssociation between prostate specific antigen change over time and prostate cancer recurrence risk: a joint model
Background: Prostate specific antigen (PSA) is an important biomarker to monitor patients after treated with radiation therapy (RT). The aim of this study is to evaluate the relationship between the PSA data and prostate cancer recurrence using the joint modeling. Methods: This historical cohort study was performed on 422 prostate cancer patients. Inclusion criteria included: patients with loc...
متن کاملAn approach to joint analysis of longitudinal measurements and competing risks failure time data.
Joint analysis of longitudinal measurements and survival data has received much attention in recent years. However, previous work has primarily focused on a single failure type for the event time. In this paper we consider joint modelling of repeated measurements and competing risks failure time data to allow for more than one distinct failure type in the survival endpoint which occurs frequent...
متن کاملA joint model of longitudinal and competing risks survival data with heterogeneous random effects and outlying longitudinal measurements.
This article proposes a joint model for longitudinal measurements and competing risks survival data. The model consists of a linear mixed effects sub-model with t-distributed measurement errors for the longitudinal outcome, a proportional cause-specific hazards frailty sub-model for the survival outcome, and a regression sub-model for the variance-covariance matrix of the multivariate latent ra...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Statistics in medicine
دوره 33 18 شماره
صفحات -
تاریخ انتشار 2014